
Empirical Bayes in Bayesian inference 
 
A crucial aspect of Bayesian analysis is prior elicitation. In many prominent statistical problems the 
choice of prior hyperparameters highly affects inferential results, controlling e.g. model complexity 
in model selection frameworks, the degree of shrinkage or the sparsity level in regression or Gaussian 
sequence models. In all such cases, hyperparameter selection is quite delicate. From a genuinely 
Bayesian viewpoint,  it should be based on the initial information set, available before collecting new 
data to be used for posterior computations. In the absence of sufficient prior information, a common 
practice is to opt for a data-dependent choice (empirical Bayes). A fully Bayesian alternative would 
consist in assigning a prior to hyperparameters, in a hierarchical Bayesian fashion. Three questions 
naturally arise: 
 
1. What are principled ways to obtain a data-driven choice of a hyperparameter? 
2. What are the main differences between inferences produced under the empirical and the 
hierarchical Bayesian approach, in practical, computational and theoretical terms?  
3. Are there problems where a fully Bayesian formulation is hardly viable? 
 
This reading group aims at reviewing the answers available so far in the literature and shading light 
on interesting directions for future research. A non-exhaustive list of relevant contributions follows. 
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